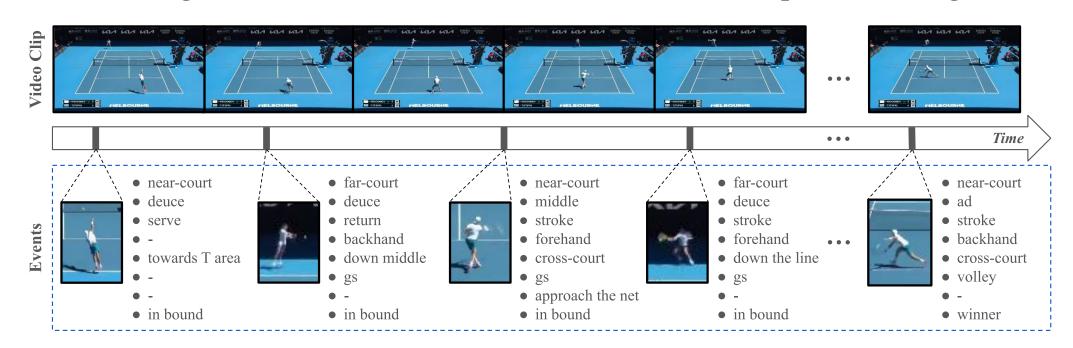
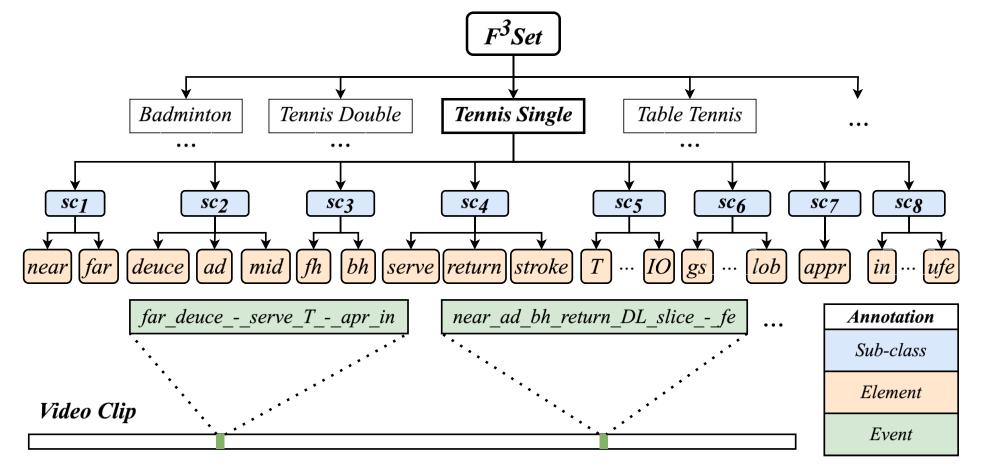


F³Set: Towards Analyzing Fast, Frequent, and Fine-grained Events from Videos


Project Pag

Code & Paper


My Homepage

Introduction

- Understanding **fast**, **frequent**, **and fine-grained** (**F**³) events is crucial for video analytics but remains underexplored.
- Applications: sports analytics, surveillance, autonomous driving...
- Challenges: subtle visual cues, motion blur, dense and precise timing.

F³Set: A Benchmark Dataset for F³ Event Detection

- Over 1,000+ event types, timestamped at frame-level granularity.
- Multi-domain: Tennis, badminton, table tennis, etc.
- Multi-level granularity $(G_{low}, G_{mid}, G_{high})$

Datasets	# Vid.	# Clips.	Avg. Clip Len.	# Classes	Evt. Len.	# Evt. / sec		
(a) Fine-grained				Fine-grained	Fast	Frequent		
FineAction [41]	-	16,732	149.5s	101	6.9s	0.3		
ActivityNet [4]	_	19,994	116.7s	200 49.2s		0.01		
FineGym [58]	303	32,697	50.3s					
(b) Fast								
CCTV-Pipe [42]	ΓV-Pipe [42] 575		549.3s	16	< 0.1s	0.02		
SoccerNetV2 [11]	9	9	99.6min	12	< 0.1s	0.3		
(c) Frequent								
FineDiving [69]	135	3,000	4.2s	29	1.1s	~1		
(d) Fast & Frequent	ţ							
ShuttleSet [66]	uttleSet [66] 44 3,685 10.9s		10.9s	18	< 0.1s	~ 1		
P^2 ANet [3]	200	2,721	360.0s	14	< 0.1s	~ 2		
(d) Fast & Frequent	t & Fine-g	grained						
F ³ Set	114	11,584	8.4s	1,108	< 0.1s	\sim 1		

Our Proposed Approach: F³ED

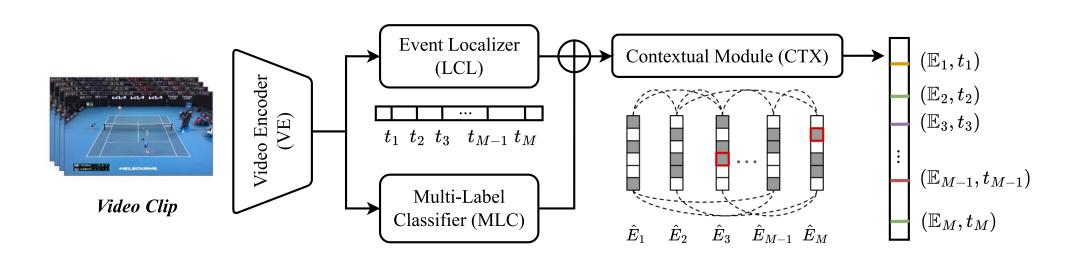
Zhaoyu Liu^{1*}, Kan Jiang¹, Murong Ma¹, Zhe Hou², Yun Lin³, Jin Song Dong¹

1. National University of Singapore, 2. Griffith University, 3. Shanghai Jiao Tong University

Video Encoder (VE)

Extracts frame-wise features: F = VE(X), where $X \in \mathbb{R}^{H \times W \times 3 \times N}$

• Event Localizer (LCL)


Predicts event probabilities per frame: $(\hat{p}_1, \hat{p}_2, ..., \hat{p}_N) = \sigma(LCL(F))$

Multi-label Classifier (MLC)

Predicts event types: $\hat{E}_i = \sigma(MLC(f_i)) = [\hat{e}_{i,1}, \hat{e}_{i,2}, ..., \hat{e}_{i,K}], \ \hat{e}_{i,i} \in [0,1]$

Contextual Module (CTX)

Refines event sequence: $(\mathbb{E}_1, \mathbb{E}_2, ..., \mathbb{E}_M) = CTX(\hat{E}_1, \hat{E}_2, ..., \hat{E}_M)$

Experimental Results

Evaluation Metrics

- F1 score (event & element level): Measures precision and recall of predicted events.
- Edit score: Sequence-level similarity using Levenshtein distance.
- Temporal tolerance: F1 scores computed with ±1 frame tolerance for precise localization.

Baseline Models

- Video encoders: TSN, I3D, VTN, SlowFast, TSM.
- Head architectures: MS-TCN, ASFormer, G-TAD, ActionFormer, E2E-Spot.

Results & Analysis

- Capturing fine-grained temporal cues matters more than encoder complexity.
- E2E-Spot (GRU) head module outperforms, offering efficient long-term modeling.
- F³ED consistently outperforms all baselines across F1 and Edit scores.

		F^3 Set (G_{high})			F^3 Set (G_{mid})			F^3 Set (G_{low})		
Video encoder	deo encoder Head arch.		$F1_{elm}$	Edit	$\overline{\mathrm{F1}_{evt}}$	$F1_{elm}$	Edit	$\overline{\mathrm{F1}_{evt}}$	$F1_{elm}$	Edit
TSN [64]	MS-TCN [19]	15.9	59.8	53.5	23.2	60.9	65.8	45.7	70.4	72.8
	ASformer [71]	11.9	54.3	49.8	17.3	56.1	62.5	40.3	67.3	70.3
	G-TAD [70]	6.0	47.5	24.7	14.1	52.1	48.6	19.9	57.4	44.7
	ActionFormer [72]	18.4	60.6	55.2	24.8	61.9	67.3	48.7	70.6	72.2
	E2E-Spot [24]	24.7	65.3	60.1	31.5	66.2	71.0	53.5	73.6	75.0
SlowFast [20]	MS-TCN [19]	17.2	63.1	56.2	24.3	65.5	70.3	47.4	73.1	73.5
	ASformer [71]	14.1	60.8	55.3	20.3	62.8	69.4	44.8	72.9	71.9
	G-TAD [70]	23.0	66.1	64.0	29.6	66.5	74.2	53.3	76.0	77.9
	ActionFormer [72]	28.7	70.0	67.6	35.5	70.9	76.4	59.3	77.1	81.5
	E2E-Spot [24]	25.9	69.4	65.7	33.8	70.4	75.4	55.5	76.5	79.5
I3D [5]	E2E-Spot [24]	22.7	59.7	68.7	27.1	60.7	74.2	51.9	67.7	78.3
VTN [52]	E2E-Spot [24]	14.8	58.3	56.7	20.0	59.4	68.2	39.7	63.1	73.1
TSM [35]	MS-TCN [19]	21.7	67.3	58.6	30.4	69.5	73.0	50.2	74.0	75.3
	ASformer [71]	17.6	61.9	57.5	25.5	64.0	74.2	46.0	72.9	74.0
	G-TAD [70]	16.9	62.5	55.2	29.8	66.9	74.8	39.8	70.1	67.2
	ActionFormer [72]	22.4	65.7	60.3	31.0	68.2	74.7	52.4	73.8	74.9
	E2E-Spot [24]	31.4	71.4	68.7	39.5	72.3	77.9	60.6	78.4	82.1
TSM[35]	F^3ED	40.3	75.2	74.0	48.0	76.5	82.4	68.4	80.0	87.2

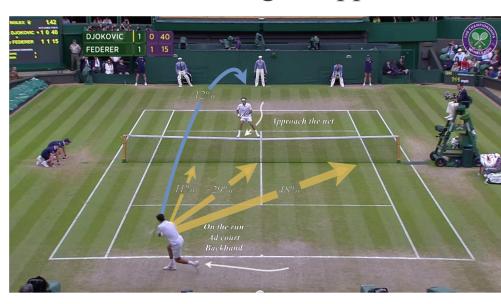
Ablation Studies

- Frame-wise > clip-wise: dense sampling is crucial for fast actions.
- Multi-label > multi-class: better handles long-tail event combinations.
- CTX (BiGRU) improves sequence validity and accuracy.
- Longer clips help but with diminishing returns.
- Stride size matters: larger strides hurt performance.

	$\mathrm{F}^3\mathrm{Set}\left(G_{high} ight)$			F^3 Set (G_{mid})			F^3 Set (G_{low})		
Experiment	$\overline{F1_{evt}}$	$F1_{elm}$	Edit	$\overline{\mathrm{F1}_{evt}}$	$F1_{elm}$	Edit	$\overline{\mathrm{F1}_{evt}}$	$F1_{elm}$	Edit
TSM + E2E-Spot	31.4	71.4	68.7	39.5	72.3	77.9	60.6	78.4	82.1
(a) Feature extractor									
I3D [5] (clip-wise) VTN [52] (video transformer) ST-GCN++ [17] (skeleton-based) PoseConv3D [18] ((skeleton-based))	22.7 14.8 25.4 20.1	59.7 58.3 62.1 54.5	68.7 56.7 56.1 53.2	27.1 20.0 32.4 26.0	60.7 59.4 63.9 55.4	74.2 68.2 63.5 61.9	51.9 39.7 55.1 48.8	67.7 63.1 69.4 63.0	78.3 73.1 73.2 69.7
(b) Stride size = 4 Stride size = 8	25.9 14.0	69.2 56.7	62.7 44.3	33.4 18.5	69.9 57.4	73.0 54.8	60.0 40.4	77.9 67.0	78.8 59.2
(c) without GRU	27.6	69.0	60.6	38.0	71.3	75.3	54.7	74.1	73.4
(d) Clip Length = 32 Clip Length = 64 Clip Length = 192	26.3 30.7 29.3	67.4 71.2 70.3	54.5 67.4 65.7	35.5 38.6 37.3	69.4 72.4 71.4	71.8 77.5 77.0	53.2 58.4 58.8	75.1 77.9 77.1	68.9 81.1 80.4
(e) Multi-label	37.9	74.3	71.7	45.9	75.6	80.1	66.6	80.1	85.1
(f) Multi-label + CTX (Transformer) Multi-label + CTX (BiGRU)	39.0 40.3	74.3 75.2	72.8 74.0	50.5 48.0	75.5 76.5	81.8 82.4	63.4 68.4	79.6 80.0	86.8 87.2

Generalizability to "Semi-F³" Data

• F³ED performs well on other domains: **badminton**, **diving**, **gymnastics**, **soccer**, **pipe inspection**.


	Shuttles	Set [66]	FineDiving [69]		FineGym [58]		SoccerNetV2 [11]		CCTV-Pipe [42]	
Head arch.	$\overline{F1_{evt}}$	Edit	$\overline{\mathrm{F1}_{evt}}$	Edit	$\overline{F1_{evt}}$	Edit	$\overline{\mathrm{F1}_{evt}}$	Edit	$\overline{F1_{evt}}$	Edit
MS-TCN [19]	70.3	74.4	65.7	92.2	57.6	65.3	43.4	74.5	25.8	31.3
ASformer [71]	55.9	70.6	49.9	87.6	53.6	66.3	46.3	76.1	15.4	33.4
G-TAD [70]	48.2	61.1	52.1	82.6	45.8	51.4	42.3	72.3	31.3	33.6
ActionFormer [72]	62.1	67.5	68.3	92.4	54.0	59.7	43.0	64.6	18.8	29.5
E2E-Spot [24]	70.2	75.0	75.8	93.7	62.1	65.4	46.2	72.9	27.2	35.2
$\overline{F^3ED}$	70.7	77.1	77.6	95.1	70.9	70.7	48.1	76.6	37.0	39.5

Real-World Applications

Serve & Return Patterns

On-the-run returning an approach shot

